Abstract

In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside of the engineered barrier by anaerobic corrosion of metals used for containers, etc. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. In this study, a method for simulating gas migration through the compacted bentonite is proposed. The proposed method can analyze coupled hydrological-mechanical processes using the model of two-phase flow through deformable porous media. Validity of the proposed analytical method is examined by comparing gas migration test results with the calculated results, which revealed that the proposed method can simulate gas migration behavior through compacted bentonite with accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.