Abstract

AbstractThe computation of two-phase flow scenarios in a high pressure and temperature environment is a delicate task, for both the physical modeling and the numerical method. In this article, we present a sharp interface method based on a level-set ghost fluid approach. Phase transition effects are included by the solution of the two-phase Riemann problem at the interface, supplemented by a phase transition model based on classical irreversible thermodynamics. We construct an exact Riemann solver, as well as an approximate Riemann solver. We compare numerical results against molecular dynamics data for an evaporation shock tube and a stationary evaporation case. In both cases, our numerical method shows a good agreement with the reference data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.