Abstract

In our previous study, we first succeeded in construction of a novel-types self-oscillting molecular robot. However, the driving environment of the molecular robot was firmly restricted in strong acid conditions. This is because the molecular robots drive induced by the Belousov-Zhabotinsky (BZ) reaction, which is well known for exhibiting temporal and spatiotemporal oscillating phenomena. The overall process of the BZ reaction is the oxidation of an organic substrate, such as malonic acid (MA) or citric acid, by an oxidizing agent (bromate ion) in the presence of a strong acid and a metal catalyst. In this study, in order to drive the novel molecular robot under the physiological condition, we conducted the modification of the molecular structure of the self-oscillating polymer chain. In order to cause the self-oscillation under the biological condition, we synthesized a built-in system where the BZ substrates other than organic acid were incorporated into the molecular robot itself. As a result, the novel molecular robot drives under the biological condition. We believe that the development of the novel molecular robot lead to construction of the novel biomimetic soft robots and actuators, and may inspire novel nonlinear experimental and theoretical considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call