Abstract

Wind turbine blades undergo fatigue and their performance depletes as time progresses due to the formation of internal cracks. Self-healing in polymers is a unique characteristic used to heal the cracks inherently as they form. In this study, a new method is demonstrated for supplying the monomer (that is quintessential for the healing process) uniformly throughout a fiber reinforced polymer composite. Commercial tubes were used to produce a vascular network for increased accessibility of the healing agent. The tube layouts were varied and their effect on the composite structure was observed. Conventional glass fiber reinforced polymer matrix composites (PMC) without microtubing were tested using dynamic mechanical analysis (DMA) to study the flexural visco–elastic behavior. The vascular network arrangement coupled with DMA data can be used to uniformly supply appropriate amount of healing agent to implement Self-healing in fiber reinforced PMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.