Abstract

The aim of this study was to develop and evaluate novel polyglycerol fatty acid ester (PGFE)-based nanoparticles (NPs) for the dermal delivery of tocopherol acetate (TA). TA-loaded PGFE-based NPs (PGFE-NPs) were prepared by mixing PGFE, soya phosphatidylcholine, dimyristoylphosphatidylglycerol, and TA with film using the film rehydration and extrusion method. The prepared formulations were analyzed by dynamic light scattering, small-angle X-ray diffraction and polarization microscopy. An in vitro skin accumulation test was performed with TA under occlusive and non-occlusive applications, using Yucatan micropig skin. The size range of the TA-loaded liposome and PGFE-NPs was 107-128nm, and they were encapsulated in 1.6-2.3mg/mL TA. All PGFE-NP formulations were negatively charged and stable for 2weeks. Under occlusive applications, all formulations induced small amounts of TA accumulation in the epidermis but not in the dermis. However, under non-occlusive applications, some of PGFE-NP formulations enhanced TA accumulation in the epidermis. Furthermore, only the polyglycerol 4-laurate (PG4L)-based formulation induced dermal TA accumulation with the change in the formulation from a vesicular to bilayer stacked structure following water evaporation under non-occlusive applications. These results indicated that the novel TA-loaded PG4L formulation enabled the dermal delivery of TA in non-occlusive applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call