Abstract
Layered double hydroxides (LDHs) with their unique structural chemistry create opportunities to be modified with polymers, making different nanocomposites. In the current research, a novel PET-PAN embedded with Mg-AI-LDH-PVA nanocomposite membrane was fabricated through electrospinning. SEM, EDX, FTIR, XRD, and AFM were carried out to investigate the structure and morphology of the nanocomposite membrane. The characterization of the optimized nanocomposite membrane showed a beadless, smooth structure with a nanofiber diameter of 695 nm. The water contact angle and tensile strength were 16° and 1.4 Mpa, respectively, showing an increase in the hydrophilicity and stability of the nanocomposite membrane by the addition of Mg-Al-LDH-PVA. To evaluate the adsorption performance of the nanocomposite membrane, operating parameters were achieved for Cr(VI) and methyl orange at pH 2.0 and pH 4.0, respectively, including contact time, adsorbate dose, and pollutant concentration. The adsorption data of the nanocomposite membrane showed the removal of 68% and 80% for Cr(VI) and methyl orange, respectively. The process of adsorption followed a Langmuir isotherm model that fit well and pseudo-2nd order kinetics with R2 values of 0.97 and 0.99, respectively. The recycling results showed the membrane's stability for up to five cycles. The developed membrane can be used for efficient removal of pollutants from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.