Abstract
The "3 + 1" ligand system [SN(R)S/S combination] was applied in order to synthesize neutral mixed-ligand oxotechnetium complexes of the general formula 99mTcO[SN(R)S]/[S] as potential 5-HT1A receptor imaging agents. The complexes are carrying the 1-(2-methoxyphenyl)piperazine moiety, a fragment of the true 5-HT1A antagonist WAY 100635, either on the monodentate ligand [S] or on the tridentate ligand [SN(R)S]. The complexes MO[EtN(CH2CH2S)2] [o-MeOC6H4N(CH2CH2)2NCH2CH2S] (3), MO[o- MeOC6H4N(CH2CH2)2N(CH2)3N(CH2CH2S)2][PhS] (6) and MO[o-MeOC6H4N(CH2CH2)2N(CH2)3N(CH2CH2S)2] [PhCH2CH2S] (9), where M = 99mTc, were prepared at tracer level using 99mTc glucoheptonate as precursor. For structural characterization, the analogous oxorhenium (M = Re, 1, 4 and 7, respectively) and oxotechnetium (M = 99gTc, 2, 5 and 8, respectively) complexes were prepared by ligand exchange reactions. All products were characterized by elemental analysis and spectroscopic methods. Complexes 1, 4 and 7 were further characterized by crystallographic analysis. For 1, the coordination geometry about rhenium can be described as trigonally distorted square pyramidal (tau = 0.36), while for 4 and 7, as distorted trigonal bipyramidal (tau = 0.66 and tau = 0.61, respectively). The coordination sphere about oxorhenium in all complexes is defined by the SNS donor atom set of the tridentate ligand and the sulfur atom of the monodentate coligand. The structure of the 99mTc complexes 3, 6 and 9 was established by comparative HPLC using authentic oxorhenium and oxotechnetium samples. The binding affinity of oxorhenium compounds for the 5-HT1A receptor subtype was determined in rat brain hippocampal preparations (IC50 = 6-31 nM). Preliminary tissue distribution data in healthy mice revealed the ability of all three 99mTc complexes to cross the intact blood-brain barrier (0.49-1.15% ID at 1 min p.i.). In addition, complexes 6 and 9 showed significant brain retention. These promising results have demonstrated that the SNS/S mixed-ligand system can be used in the development of 99mTc complexes as potential 5-HT1A receptor imaging agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.