Abstract

A method based on pulse electrodeposition technique was developed for preparation of membrane electrode assemblies (MEAs). In this approach, platinum is deposited directly on the surface of the carbon electrode. The method ensures most of the platinum to be in close contact with the membrane. Using this method it is possible to increase the Pt/C ratio up to 75 wt % near the surface of the electrode resulting in a 5 μm thick catalyst layer. The MEA prepared by pulse electrodeposition exhibits a current density of 0.33 A/cm 2 at 0.8 V with platinum loading of 0.25 mg of Pt/cm 2 . The results indicate that pulse deposition may be an attractive technique to replace the conventional powder-type MEA preparation methods and help achieve industry goals of reducing catalyst cost and increasing efficiency in polymer electrode membrane fuel cells (PEMFCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.