Abstract
The development of novel Kinetic Energy (KE) functionals is an important topic in density functional theory (DFT). In particular, this happens by means of an analysis with newly developed benchmark sets. Here, I present a study of Laplacian-level kinetic energy functionals applied to metallic nanosystems. The nanoparticles are modeled using jellium sph eres of different sizes, background densities, and number of electrons. The ability of different functionals to reproduce the correct kinetic energy density and potential of various nanoparticles is investigated and analyzed in terms of semilocal descriptors. Most semilocal KE functionals are based on modifications of the second-order gradient expansion GE2 or GE4. I find that the Laplacian contribute is fundamental for the description of the energy and the potential of nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.