Abstract

This work aims to develop a novel Co16X6Si7-G (X = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re) phase strengthened ferritic steel with the help of first-principles calculations. Ddensity function theory calculation results demonstrated that the Co16X6Si7-G phase possesses the advantage of good thermodynamic stability and low misfit with the ferritic matrix. On the basis of calculation, we successfully prepared three model alloys, i.e., the Fe20Cr5Co2Si1Ti, Fe20Cr5Co2Si0.75Nb and Fe20Cr5Co2Si1.5Ta (wt.%), who make a good trade-off between strength, ductility and good oxidation/corrosion resistance. Our observation verified that the Co16X6Si7-G phase can precipitate within 1 h with proper heat treatment, showing a cube-on-cube orientation relationship with its parent matrix. The introduction of G phase precipitates amazingly increases the micro-hardness of model alloys by ∼ 160 HV after aging at 873 K. And the precipitates within the ferrite phase have not been observed to grow coarser even after 96 hrs aging treatment. Furthermore, excellent mechanical properties of ∼ 1.2 GPa tensile strength and ∼ 10 % total elongation have been achieved after 6 hrs aging time at 873 K. These findings indicate the Co16X6Si7-G phase would be a promising candidate as a strengthening medium and provide valuable insight into the screen of precipitates for the development of high-strength and ductile steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.