Abstract

The dual-target inhibitors (ZINC000008876351 and ZINC000253403245) were identified by utilizing an advanced computational drug discovery method by targeting two critical enzymes such as FeSODA (Iron superoxide dismutase) and TryR (Trypanothione reductase) within the antioxidant defense system of Leishmania donovani (Ld). In vitro enzyme inhibition kinetics reveals that both the compound's ability to inhibit the function of enzyme LdFeSODA and LdTryR with inhibition constant (Ki) value in the low μM range. Flow cytometry analysis, specifically at IC50 and 2X IC50 doses of both the compounds, the intracellular ROS was significantly increased as compared to the untreated control. The compounds ZINC000253403245 and ZINC000008876351 exhibited strong anti-leishmanial activity in a dose-dependent manner against both the promastigote and amastigote stages of the parasite. The data indicate that these molecules hold promise as potential anti-leishmanial agents for developing new treatments against visceral leishmaniasis, specifically targeting the LdFeSODA and LdTryR enzymes. Additionally, the in vitro MTT assay shows that combining these compounds with miltefosine produces a synergistic effect compared to miltefosine alone. This suggests that the compounds can boost miltefosine's effectiveness by synergistically inhibiting the growth of L. donovani promastigotes. Given the emergence of miltefosine resistance in some Leishmania strains, these findings are particularly significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.