Abstract

AbstractNovel conducting polymer composites of linseed‐oil‐based poly(urethane amide) (LPUA) were synthesized using nanostructured poly(1‐naphthylamine) (PNA). The combination of the electrically conducting PNA with LPUA was accomplished through different weight percent loadings (0.5–2.5 wt%) of the conducting polymer. The particle size of the nanocomposite was determined using transmission electron microscopy and was found to be in the range 17–27 nm. Intermolecular hydrogen bonding between the two polymers and formation of urea linkages were confirmed by Fourier transform infrared spectroscopy. The electrical conductivity of the nanostructured conducting composites at 2.5 wt% loading was found to be comparable to that reported for polyaniline (PANI)/polyurethane at 30 wt% loading of PANI. This shows the superior properties of PNA and its potential for application in anti‐static as well as corrosion‐protective coatings. The present method of formulation of composites using an oil‐based polymer matrix is useful and economically feasible in the sense that a great variety of oil‐based polymer matrices can be used to form composites that are ecologically safe and exhibit properties similar to commercial polymers. Copyright © 2007 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.