Abstract

Nonsense mutations promote premature translational termination and represent the underlying cause of a large number of human genetic diseases. The aminoglycoside antibiotic gentamicin has the ability to allow the mammalian ribosome to read past a false-stop signal and generate full-length functional proteins. However, severe toxic side effects along with the reduced suppression efficiency at subtoxic doses limit the use of gentamicin for suppression therapy. We describe here the first systematic development of the novel aminoglycoside 2 (NB54) exhibiting superior in vitro readthrough efficiency to that of gentamicin in seven different DNA fragments derived from mutant genes carrying nonsense mutations representing the genetic diseases Usher syndrome, cystic fibrosis, Duchenne muscular dystrophy, and Hurler syndrome. Comparative acute lethal toxicity in mice, cell toxicity, and the assessment of hair cell toxicity in cochlear explants further indicated that 2 exhibits far lower toxicity than that of gentamicin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call