Abstract
To enhance the interactivity with biological cells, we developed ultrasmall (5 nm in diameter) Ag NPs coated with a mixture of Tween-20 (Tw-20) surfactant and human serum albumin (HSA) or hemoglobin (Hb) proteins. These were tested with cancerous and healthy cell lines to investigate the therapeutic applicability. Using the established concept of generation of reactive oxygen species (ROS) and the ROS-induced oxidative stress in carcinogenic cells by Ag NPs, we found that the presently synthesized Ag NPs selectively destroyed the cancerous cells. A mixture of Tw-20 with protein, where the surfactant was in large excess, created a coating over the Ag NPs resulting weaker protein–protein interactions and facilitating interfacial protein–surfactant interactions, which leads to an increase in the film viscoelasticity to enhance the stability of the Ag NPs and cell viability. Moreover, this concept has been applied to drug delivery using a model fluorophore (fluorescein) on Ag NPs to explore the prospects in photodynamic therapy. The results are encouraging and deserve further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.