Abstract
A novel silica-based adsorbent was synthesized by impregnating macroporous silica polymer composite (SiO2-P) particles with a mixture of N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide (TEHTDGA) and tri-n-octylamine (TOA). Then, the possibility of separating Pd(II) and other metal ions from simulated high-level liquid waste (HLLW) using the newly synthesized adsorbent (TEHTDGA+TOA)/SiO2-P was evaluated based on various adsorption characteristics obtained via batch-adsorption experiments, such as the HNO3 concentration, contact time, reaction temperature, adsorption isotherm, and chemical stability of the adsorbent. Furthermore, column separation experiments were performed based on the characteristics obtained from the batch-adsorption experiment, and the possibility of simultaneous separation of multiple metal ions was examined. The experimental results revealed that (TEHTDGA+TOA)/SiO2-P performs well in the separation of multiple metal ions from simulated HLLW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.