Abstract
Automobile and transportation on land and in air are the major causes of global environment pollution through the chemical combustion of petroleum fuels. The need of the hour is to run the transportation units by fuel cells which convert fuels to energy through electrochemical oxidation, straight to pure electrical energy with no polluting substances. Development of fuel cell lies on exhaustive research on development of high energetic electrocatalytic electrodes over which the fuels break to produce free electron and ions, delivering electrical energy. The present work aims at developing two electrocatalytic materials: NiO-nanocarbon and MnO2-nanocarbon by electrosynthesis method. The performance of the materials was investigated by electrochemical characterization: cyclic voltammetry, chronoammetry, polarization tests and impedance spectroscopy. The materials were found to deliver a high current on electro-oxidation of glucose. The effect of nanocarbon on NiO and MnO2 has enhanced the current to a level of over 100 mA/cm2. XRD study showed the presence of metal oxides and carbon. The electron microscopy images revealed fine grain oxides with entrapped nanocarbon. The carbon seems to be in the form of graphene, produced during electrochemical exfoliation at anode. The SEM morphology of enhanced 3D surface area with high energetic nanocarbon phase entrapped with fine structure metal oxides accounts for the high current obtained by electro-oxidation of the fuel. The materials developed are found to be very good energetic electrodes for future fuel cell in automotive industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.