Abstract

Computational alloy design has been used to develop a new maraging steel system with low cost, using Mn for austenite reversion and Heusler Fe2SiTi nm-scale precipitates to strengthen the martensite, avoiding high cost alloying elements such as Ni and Co. A pronounced ageing response was obtained, of over 100 HV, associated with the formation of 2–30 nm Fe2SiTi precipitates alongside the development of ∼10% Mn rich austenite, at the martensite boundaries with the Kurdjumov-Sachs orientation relationship. The precipitates took on different orientation relationships, depending on the size scale and ageing time, with fine ∼5nm precipitates possessing an <100>L21//<100>α orientation relationship, compared to larger ∼20nm precipitates with <110>L21//<100>α. Computational alloy design has been used for the development and demonstration of an alloy design concept having multiple constraints. Whilst in this case computational design lacked the fidelity to completely replace experimental optimisation, it identifies the importance of embedding Thermodynamic and kinetic modelling within each experimental iteration, and vice versa, training the model between experimental iterations. In this approach, the model would guide targeted experiments, the experimental results would then be taken into future modelling to greatly accelerate the rate of alloy development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.