Abstract

Simple SummaryThe present study investigated the relationship between gastrointestinal microbiota and diarrhea in preruminant calves by using immune-related markers and further isolating specific bacterial strains, enriched in clinically healthy individuals, for potential next-generation probiotics. The gathering of microbiomic data strongly indicated the possible beneficial effects of Bifidobacterium longum subsp. longum. With further screening and isolating with immunomodulatory and antagonistic effects, two Bifidobacterium longum subsp. longum strains might be expected to emerge as next-generation probiotics. The finding here might provide a solution for preventing gastrointestinal disorders for preruminant calves without sustained periods of administration through inhibiting the infectious bacteria, immunomodulatory effect and possible modulating microbiota.(1) Background: We aimed to isolate and identify potential next-generation probiotics (NGP) by investigating the interrelationships between gastrointestinal microbiota and diarrhea in preruminant Holstein calves. (2) Material and methods: Twenty preruminant Holstein calves were divided into healthy and diarrheic groups after the combination outcomes of veterinary diagnosis and fecal scores. The fecal microbiome, plasma cytokines, plasma immunoglobulin (Ig) G and haptoglobin were analyzed. The potential probiotic bacteria were identified by comparing the microbiota difference between healthy and diarrheic calves and correlation analysis with fecal scores and inflammatory markers. The identified bacteria were also isolated for further evaluation for antimicrobial activities and immunoregulatory effects. (3) Results: Microbiota analysis suggested that Ruminococcaceae_UCG_014, Bifidobacterium and Pseudoflavonifractor positively correlated with bovine IgG and negatively correlated with fecal score; inflammatory factors, bovine HP, and IL-8 were classified as beneficial bacteria contributing to the health of the calves. The alternation of gut microbial composition also induced changes in the functional gene enrichment of gut microbiota in calves. The gathering of microbiomic data strongly indicated the possible beneficial effects of Bifidobacterium longum subsp. longum, expected to develop as NGP. After isolation and evaluation of the potential functionality in vitro, two specific bifidobacterial strains demonstrated antimicrobial activities and immunoregulatory effects. (4) Conclusions: The results provide a new probiotic searching approach for preventing gastrointestinal disorders in preruminant calves. Further animal study is necessary to verify the results.

Highlights

  • Calf diarrhea, characterized by the frequent removal of soft feces, mostly impacts individuals under 6 weeks of age and their subsequent development [1]

  • Significant alterations in microbiota structure between healthy and diarrheic calves with deviations in the predictive metagenomic function of the bacterial communities and strongly correlating with immune-related markers provided a novel insight regarding the interrelationships between gastrointestinal microbiota and diarrhea in preruminant calves

  • Based on the microbiota findings, further screening and isolation of Bifidobacterium longum subsp. longum strains with immunomodulatory and antagonistic effects was conducted to characterize the relationship with the possible amelioration of diarrheic diseases

Read more

Summary

Introduction

Calf diarrhea, characterized by the frequent removal of soft feces, mostly impacts individuals under 6 weeks of age and their subsequent development [1]. The causes involve infectious agents, including viruses (bovine coronavirus, rotavirus, bovine viral diarrhea virus), bacteria (Escherichia coli, Salmonella spp.), and protozoa (Eimeria zuernii), which are mainly transmitted from the feces of infected animals to the mouths of susceptible animals [2]. The non-infectious parameters, such as stress, the nutritional and immunological conditions, and the production systems of young calves are crucial for the incidence of diarrheic calves [2]. Accumulating evidence has indicated that the use of antibiotics in farm animals is associated with many adverse effects [3]. Several pieces of evidence suggested that the reconstitution of a healthy microbial community is an effective approach to prevent or treat gastrointestinal disorders [4]. The use of beneficial probiotics has been recognized to prevent the dysbiosis of intestinal microbiota and the establishment of pathogenic microbial populations. The feeding dosage varies depending on the probiotic strains and animal conditions, but sustained periods of administration are needed due to the fecal colonization of the probiotics decreasing with time

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call