Abstract

Some studies have reported inaccuracy of predicting basal metabolic rate (BMR) by using common equations for Asian people. Thus, this study was undertaken to develop new predictive equations for the Iranian community and also to compare their accuracy with the commonly used formulas. Anthropometric measures and thyroid function were evaluated for 267 healthy subjects (18-60 y). Indirect calorimetry (InCal) was performed only for those participants with normal thyroid function tests (n=252). Comparison of predicted RMR (both kcal/d and kcal.kg.wt-1.d-1) using current predictive formulas and measured RMR revealed that Harris-Benedict and FAO/WHO/UNU significantly over-estimated and Mifflin-St. Jeor significantly under-estimated RMR as compared to InCal measurements. In stepwise regression analysis for developing new equations, the highest r2 (=0.89) was from a model comprising sex, height and weight. However, further analyses revealed that unlike the subjects under 30 y, the association between age and the measured RMR in subjects 30 y and plus was negative (r=-0.241, p=0.001). As a result, two separate equations were developed for these two age groups. Over 80 percent of variations were covered by the new equations. In conclusion, there were statistical significant under- and over-estimation of RMR using common predictive equations in our subjects. Using the new equations, the accuracy of the calculated RMR increased remarkably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.