Abstract
A new type of photocatalytic reaction that splits water into H2 and O2 was designed using a two-step photoexcitation system composed of an iodate/iodide (IO3-/I-) shuttle redox mediator and two different photocatalysts, one for H2 evolution and the other for O2 evolution. Photocatalytic oxidation of water to O2 and reduction of IO3- to I- selectively proceeded with good efficiencies over TiO2-rutile and Pt-WO3 photocatalysts under UV and visible light irradiations, respectively. The O2 evolution selectively proceeded even in the presence of a considerable amount of I- in the solutions, although the oxidation of water is thermodynamically less favorable than oxidation of I-. Both the adsorption property of IO3- anions and the oxidation property of the photocatalysts are doubtless responsible for the selective oxidation of water. On the other hand, photocatalytic reduction of water to H2 and oxidation of I- to IO3- proceeded over Pt-TiO2-anatase and Pt-SrTiO3:Cr/Ta (codoped with Cr and Ta) photocatalysts under UV and visible light, respectively. The combination of two different photocatalysts results in a stoichiometric evolution of H2 and O2 via the redox cycle of IO3- and I-. The photocatalytic water splitting under visible light irradiation (lambda > 420 nm) was demonstrated by using the Pt-SrTiO3:Cr/Ta, Pt-WO3, and IO3-/I- shuttle redox mediator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.