Abstract

We continue our review of recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). In Part I (), the electrocatalytic splitting of water to oxygen and hydrogen was introduced as a key process in developing future devices for various energy-related applications. A survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis was presented. Part II discusses mechanistic details and acid stability of pgm oxides and presents the conclusions and outlook. We highlight emerging work that shows how leaching of the base metals from the multinary compositions occurs during operation to yield active pgm-oxide phases, and how attempts to correlate stability with crystal structure have been made. Implications of these discoveries for the balance of activity and stability needed for effective electrocatalysis in real devices are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call