Abstract
Traditional diagnoses on addiction reply on the patients' self-reports, which are easy to be dampened by false memory or malingering. Machine learning (ML) is a data-driven procedure that learns algorithms from training data and makes predictions. It is quickly developed and is more and more utilized into clinical applications including diagnoses of addiction. This chapter reviewed the basic concepts and processes of ML. Some studies utilizing ML to classify addicts and non-addicts, separate different types of addiction, and evaluate the effects of treatment are also reviewed. Both advantages and shortcomings of ML in diagnoses of addiction are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in experimental medicine and biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.