Abstract
This study proposes two new hierarchical clustering methods, namely weighted and neighbourhood to overcome the issues such as getting less accuracy, inability to separate the clusters properly and the grouping of more number of clusters which exist in present hierarchical clustering methods. We have also proposed three new criteria to assess the performance of clustering methods: (1) overall effectiveness which means the product of overall efficiency and accuracy of the clusters which is used to evaluate the performance of the hierarchical clustering methods for the class label datasets, (2) modified structure strength S(c) to overcome the usage problem in hierarchical clustering methods to determine the number of clusters for non-class label datasets and (3) R-value which is the ratio of the determinant of the sum of square and cross product matrix of between-clusters to the determinant of the sum of square and cross product matrix of within-clusters. This will help us to validate the performance of hierarchical clustering methods for non-class label datasets. The evolved algorithms provided high accuracy, ability to separate the clusters properly and the grouping of less number of clusters. The performance of the new algorithms with existing algorithms is compared in terms of newly developed performance criteria. The new algorithms thus performed better than the existing algorithms. The whole exercise is done with the help of twelve class label and six non-class label datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.