Abstract

We have analyzed in organotypic rat visual cortex cultures the way in which expression of brain-derived neurotrophic factor (BDNF) mRNA depends on synaptically generated spontaneous bioelectric activity (SBA) as monitored by recordings of pyramidal cells. SBA was initially low, but from the fourth week onwards 83% of the neurons fired action potentials at 0.2-1.2 impulses/s in a well-balanced state of excitation and inhibition. BDNF mRNA expression increased during the second week to a level surprisingly similar to the adult visual cortex in vivo, despite the fact that activity rates in vitro were approximately 10-fold lower than rates reported in vivo. Thus, SBA generated by a cortical neuronal network in the absence of sensory input is sufficient to elicit and maintain BDNF expression. The transient BDNF peak occurring after eye opening in vivo did not occur in vitro. A blockade of SBA seems not to alter the expression of neurotrophin (NT)-3 and -4/5, and tyrosine kinase receptor C and B mRNA. However, BDNF expression remained extremely low. A recovery of SBA after a period of blockade concurred with a transient hyperexcitability. BDNF immediately increased, driven by calcium influx through voltage-gated channels in synergy with NMDA receptors. Expression transiently reached high levels in neurons of supragranular layers. Infragranular neurons, although firing action potentials, recovered BDNF expression much slower. After 5 days in vitro recovery, the network had de novo established a balanced state of excitation and inhibition. Distribution and expression level of BDNF mRNA had returned to control. Even in 'adult' cultures an acute blockade of SBA downregulated BDNF, and a subsequent recovery of SBA restored BDNF expression. We conclude that BDNF mRNA expression depends on and responds with a fast kinetic to changes of the SBA. Steady-state levels do not depend on the absolute levels of activity, but more likely on the balance between excitation and inhibition, suggesting a role for BDNF in activity homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.