Abstract

BackgroundSocial reticence in early childhood is characterized by shy and anxiously avoidant behavior, and it confers risk for pediatric anxiety disorders later in development. Aberrant threat processing may play a critical role in this association between early reticent behavior and later psychopathology. The goal of this longitudinal study is to characterize developmental trajectories of neural mechanisms underlying threat processing and relate these trajectories to associations between early-childhood social reticence and adolescent anxiety. MethodsIn this 16-year longitudinal study, social reticence was assessed from 2 to 7 years of age; anxiety symptoms and neural mechanisms during the dot-probe task were assessed at 10, 13, and 16 years of age. The sample included 144 participants: 71 children provided data at age 10 (43 girls, meanage = 10.62), 85 at age 13 (46 girls, meanage = 13.25), and 74 at age 16 (36 girls, meanage = 16.27). ResultsA significant interaction manifested among social reticence, anxiety symptoms, and time, on functional connectivity between the left amygdala and the left dorsolateral prefrontal cortex, voxelwise p < .001, clusterwise familywise error p < .05. Children with high social reticence showed a negative association between amygdala–dorsolateral prefrontal cortex connectivity and anxiety symptoms with age, compared to children with low social reticence, suggesting distinct neurodevelopmental pathways to anxiety. ConclusionsThese findings were present across all conditions, suggesting task-general effects in potential threat processing. Additionally, the timing of these neurodevelopmental pathways differed for children with high versus low social reticence, which could affect the timing of effective preventive interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call