Abstract

The development of negative skin friction (NSF) on single piles is investigated based on an uncoupled method of analysis with the Mikasa (1963) generalized nonlinear consolidation theory in terms of finite strain and the nonlinear load-transfer method. Predicted results are compared with results based on the conventional linear consolidation theory with infinitesimal strains. It is found that predicted development of dragload using the conventional consolidation theory is slightly greater and conservative compared to that using the nonlinear consolidation theory based on effective stress (β method). Effective stress predictions using the conventional theory are larger due to the faster dissipation of excess pore pressures, with the assumption of constant coefficient of consolidation and permeability. However, since the relative displacements required to mobilize the ultimate skin friction are small, and piles are usually installed near the final stages of soil consolidation, the differences in the predictions for the development of dragload on piles between the two consolidation theories are overshadowed. Using the uncoupled model for pile NSF, it is therefore found that the most significant factor for the estimation of dragload and downdrag is the proper selection of the β value rather than the consolidation theory used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call