Abstract
<b>Background and Objective:</b> Nowadays, Dyes is widely used to improve fingerprints identification test. Natural dyes are another interesting way that can be used instead of chemical dyes because of its non-toxicity and lower cost. In this research, the development of rust powder from <i>Plumeria</i> tree was applied for fingerprints identification due to its fluorescence property under UV. Rust and Small Particle Reagent (SPR), containing ZnCO<sub>3 </sub>were applied to detect hidden fingerprints on non-porous surfaces in both dried and wet condition. <b>Materials and Methods:</b> Yellowish Rust from <i>Plumeria</i> tree was extracted with ethanol, grinded, dried and then mixed with ZnCO<sub>3</sub>. Powder slurry was sprayed over fingerprint mark on different surfaces and monitored in both dried and wet condition. Visualization of fingerprint under UV was observed. Scanning microscope (SEM), UV-visible spectroscopy (UV-VIS), Fourier-Transform Infrared Spectroscopy (FTIR) and Energy-Dispersive X-ray (EDX) were also used to characterize physical and chemical properties of rust powder. <b>Results:</b> Fingerprints identification by dust technique using <i>Plumeria</i> rust powder as ingredient, provide best quality enhancement of fingerprints under UV light due to its fluorescent property, whereas a conventional technique of Small Particle Reagent technique (SPR) doesn't show fluorescent under UV. Data from SEM and FTIR show slight adhesion between zinc carbonate particles and rust powder. <b>Conclusion:</b> Fluorescence properties of rust powder is still interesting. Further improvement in powder recipe will be further investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.