Abstract

In this study the preparation and stabilization of poly(acrylic acid)-cysteine nanoparticles and incorporation of a fluorescence marked model-compound was investigated. Nanoparticles were prepared by ionic gelation of a poly(acrylic acid)-cysteine conjugate with calcium chloride. Poly(acrylic acid)-cysteine nanoparticles display high cohesive properties due to a cross-linking process via calcium bridges in the core and the pervasive formation of disulphide bonds and were 139 ± 34 nm in size. Nanoparticles were loaded with FITC-dextrans (flourescein isothiocyanate-dextrans) of 4, 20 and 40 kDa molecular mass as model-compound via sonication method or via vibration method for 3 and 24 h. In vitro release studies showed an initial burst release followed by an extended release of model-compounds. The lower the molecular mass of the FITC-dextrans, the higher was the amount of incorporated and released model compounds. Vibration seems to be a proper method for the incorporation of hydrophilic and macromolecular drugs in poly(acrylic acid)-cysteine nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.