Abstract

This study presents the development of a thermal energy storing cementitious composite that incorporates phase change material (PCM) microencapsulated in biosourced polymer shell (m-PCM). The biodegradability of the encapsulated PCM was assessed using Nuclear Magnetic Resonance (NMR), which confirmed the high biodegradability of the m-PCM shell under specific environmental conditions. To examine the thermophysical properties of the m-PCM, Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) were performed. The DSC results revealed exothermic enthalpies of 84.7 J/g and 140.2 J/g, with associated peak temperatures of − 3.2 °C and − 22.9 °C, respectively. Subsequently, the m-PCM was incorporated into cement-based mortar at proportions of 5%, 10%, and 15% by weight of binder. Uniaxial compression tests were conducted to evaluate the effect of the m-PCM on the mechanical properties of the mortar. The results indicated a significant decrease in mechanical strength upon incorporating the m-PCM. However, this reduction in strength was mitigated by the addition of silica fume (SF) and multiwalled carbon nanotubes (MWCNTs) in combination. Furthermore, a thermal cycling test was performed to examine the behavior of the nanomodified m-PCM incorporated mortar under varying ambient conditions. The results showed that the addition of MWCNTs improved both the mechanical performance and thermal performance of the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.