Abstract

Porous three-dimensional scaffolds with potential for application as cancellous bone graft substitutes were prepared using the freeze-drying technique. Hydroxyapatite with different weight ratio was embedded in the network of poly(acrylic acid) grafted chitosan accompanied by using TiO2 as an auxiliary component to fabricate porous nanocomposite bone scaffolds. Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis and mechanical tests were carried out to characterize the prepared scaffolds. These scaffolds showed well-controlled and interconnected porous structures. The pore size and porosity of the scaffolds could be effectively modulated by selecting appropriate amounts of hydroxyapatite. The results obtained from mechanical properties measurements indicated that the scaffolds could basically retain their strength in their dry state and have adequate mechanical properties close to those of cancellous bone. The swelling behavior of the scaffolds was also examined in both water and phosphate buffer saline solution. The cytotoxicity of the scaffold was determined by MTT assays on human fibroblast gum (HuGu) cells for 24, 48 and 72h. In conclusion, this investigation demonstrates that the fabricated nanocomposite scaffolds are suitable for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.