Abstract

Among human diseases, cancer has been in the frontlines of drug discovery and development. Despite having several decades of research efforts, therapeutic targeting of cancer is still challenging, which is due to the ability of cancer cells to adapt to the tumor microenvironment, exhibiting resistance to therapeutic drugs, and facilitated altered cancer metabolism. The small molecule inhibitors aimed at targeting a selective pathway are becoming void since cancer cells can activate alternate mechanisms. Despite broad acceptance of the Warburg effect, cellular energy metabolism, which determines the cell fate, is often overlooked for cancer treatment. We reported earlier that mitochondrial chaperone, TRAP-1 acts as a switch for activating the alternate cellular metabolism. Hence, we hypothesized that interfering with TRAP-1 inhibition can target the activation of alternative energy metabolism and sensitize tumor cells to existing chemotherapeutic drugs. We developed a nanocarrier where the iron oxide nanoparticles (IONs) were conjugated to Hsp90 inhibitor, geldanamycin (GA), and the mitochondria localization signal (MLS) peptide. We examined its effect against mitochondrial dynamics and metabolic status of human tumor cells. The synthesized nanocarrier exhibited both stability and target-specific activity and did not show nanoparticle-associated cytotoxicity. However, the nanocarrier treated cancer cells exhibited altered mitochondrial morphology and decreased cellular ATP levels suggesting that selective TRAP-1 targeting interferes with the altered energy metabolism. We present a nanoparticle-based TRAP-1 inhibitor to target tumor metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call