Abstract

The Staphylococcus aureus clumping factor A (ClfA) is a fibrinogen (Fg) binding protein that plays an important role in the clumping of S. aureus in blood plasma. The current anti-infective approaches targeting ClfA are mainly based on monoclonal antibodies but showed less impressive efficacy for clinical applications. Nanobodies offer advantages in enhanced tissue penetration and a propensity to bind small epitopes. However, there is no report on generating specific nanobodies for ClfA. Here, we constructed a synthetic nanobody library based on yeast surface display to isolate nanobodies against the Fg binding domain ClfA221–550. We firstly obtained a primary nanobody directed to ClfA221–550, and then employed error-prone mutagenesis to enhance its binding affinity. Finally, 18 variants were isolated with high affinities (EC50, 1.1 ± 0.1 nM to 4.8 ± 0.3 nM), in which CNb1 presented the highest inhibition efficiency in the adhesion of S. aureus to fibrinogen. Moreover, structural simulation analysis indicated that the epitope for CNb1 partially overlapped with the binding sites for fibrinogen, thus inhibiting ClfA binding to Fg. Overall, these results indicated that the specific nanobodies generated here could prevent the adhesion of S. aureus to fibrinogen, suggesting their potential capacities in the control of S. aureus infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call