Abstract

Inert, hybrid inorganic/organic, nano-structured chemicals can be incorporated into low melting metallic materials, such as lead-free electronic solders, to achieve desired levels of service performance. The nano-structured materials technology of polyhedral oligomeric silsesquioxanes (POSS), with appropriate organic groups, can produce suitable means to promote bonding between nano-reinforcements and the metallic matrix. The microstructures of lead-free solder reinforced with surface-active POSS tri-silanols were evaluated using scanning electron microscopy (SEM). Wettability of POSS-containing lead-free solders to copper substrate was also examined. Steady-state deformation of solder joints made of eutectic Sn-Ag solder containing varying weight fractions of POSS of different chemical moieties were evaluated at different temperatures (25°C, 100°C, and 150°C) using a rheometric solids analyzer (RSA-III). Mechanical properties such as shear stress versus simple shear-strain relationships, peak shear stress as a function of rate of simple shear strain, and testing temperature for such nano-composite solders are reported. The service reliability of joints made with these newly formulated nano-composite solders was evaluated using a realistic thermomechanical fatigue (TMF) test profile. Evolution of microstructures and residual mechanical property after different extents of TMF cycles were evaluated and compared with joints made of standard, unreinforced eutectic Sn-Ag solder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call