Abstract

This work discusses the development process of a direct fastening technique for strengthening steel members using iron-based shape memory alloy (Fe-SMA) strips. First, several lap-shear tests were performed to examine the efficiency of five nail-anchor systems in terms of load-carrying capacity, slippage, and convenience of installation. To this end, 3D optical digital image correlation (DIC) measurements (using an ARAMIS system) and numerical simulation were conducted. Different failure modes including tensile rupture of the strips, shear rupture of the nails, and/or sliding of the strips were observed and discussed. The optimum nail-anchor system was then determined. This system has a very short anchorage length of approximately 50 mm and only 12 nails (i.e., 3 × 4). Second, to demonstrate the efficiency of the proposed system, a steel I-beam was strengthened with the selected nail-anchor system and activated using an infrared heating (IRH) technique. The SMA-strengthened beam was subjected to static and then high-cycle fatigue loadings with a loading ratio of R=0.2 for 2.5 million cycles without any failure or damage, indicating reliable performance of the system. Owing to the larger coefficient of thermal expansion of the Fe-SMA material compared to that of steel, it was observed that a decrease and increase in the environmental temperature resulted in an increase and decrease of the pre-stress level in the Fe-SMA strip, respectively (i.e., an inverse correlation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call