Abstract

Suppressing the dark current density (Jd) while maintaining sufficient charge transport is important for improving the specific detectivity (D*) and dynamic characteristics of organic photodetectors (OPDs). In this study, we synthesized three novel small-molecule acceptors (SMAs) densely surrounded by insulating alkyl side chains to minimize the Jd in OPDs. Introducing trialkylated N-annulated perylene diimide as a terminal moiety to the alkylated π-conjugated core structure was highly efficient in suppressing Jd in the devices, resulting in an extremely low Jd of 4.60 × 10-11 A cm-2 and 10-100 times improved D* values in the devices. In addition, SMAs with a geometrically aligned backbone structure exhibited better intermolecular ordering in the blended films, resulting in 3-10 times as high responsivity (R) values in the OPDs. Outstanding OPD performances with a D* of 8.09 × 1012 Jones, -3 dB cutoff frequency of 205.2 kHz, and rising response time of 16 μs were achieved under a 530 nm illumination in photoconductive mode. Geometrically aligned core-terminal SMAs densely surrounded by insulating alkyl side chains are promising for improving the static and dynamic properties of OPDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call