Abstract

A core issue in collaborative robotics is that of impact mitigation, especially when collisions happen with operators. Passively compliant structures can be used as the frame of the cobot, although, usually, they are implemented by means of a single-degree-of-freedom (DoF). However, n-DoF preloaded structures offer a number of advantages in terms of flexibility in designing their behavior. In this work, we propose a comprehensive framework for classifying n-DoF preloaded structures, including one-, two-, and three-dimensional arrays. Furthermore, we investigate the implications of the peculiar behavior of these structures—which present sharp stiff-to-compliant transitions at design-determined load thresholds—on impact mitigation. To this regard, an analytical n-DoF dynamic model was developed and numerically implemented. A prototype of a 10DoF structure was tested under static and impact loads, showing a very good agreement with the model. Future developments will see the application of n-DoF preloaded structures to impact-mitigation on cobots and in the field of mobile robots, as well as to the field of novel architected materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.