Abstract
The explosive development of wireless communication devices and modern electronic machines raises concerns about potential human health threats from their extensive emission of electromagnetic waves (EMW) and acoustic noise. However, the insufficient lossy medium, monotonous structure, and large fiber diameters limit the broadband EMW and noise absorption of traditionally used fibrous materials. Here, we developed electro-spun Fe-doped and SiC nanoparticle-loaded carbon fibrous membranes (Fe/SiC–C) and their multiscale composites for effective broadband EMW and acoustic waves absorption performance. The Fe/SiC–C fibrous membranes show an excellent EMW absorption bandwidth (EAB) of 6.98 GHz at a thickness of 2.45 mm. Integrating a macroscale double-layer periodic cuboid design, we fabricated Fe/SiC–C fibrous metastructure composites that exhibit broadband EMW absorption with EAB of 15.2 GHz ranging from 2.8 GHz to 18 GHz at a total thickness of 8.45 mm. Additionally, using a simple roll-up method, we assembled the Fe/SiC–C fibrous membranes into a bulk sound absorber with a superior noise reduction coefficient (NRC) of 0.57 at a thickness of 30 mm. The multiscale development of carbon-based fibrous composites enables their potential application to electromagnetic and acoustic waves absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.