Abstract

Abstract. High-resolution satellite imagery has a limitation in terms of coverage area. This limitation presents challenges for extensive-scale analysis at regional or national levels. To maximize the utility of high-resolution satellite imagery, the implementation of image mosaicking techniques is essential. In this paper, we have developed seamline extraction techniques and relative geometric correction optimized for high-resolution satellite imagery. Ultimately, we proposed a multi-strip image mosaicking method for KOMPSAT-3A (Korea Multi-Purpose Satellite-3A) images. We applied the Dijkstra's shortest path algorithm to efficiently extract seamlines. we also performed image registration based on feature matching and homography transformation to correct the relative geometric errors between input images. We conducted experiments with our methods using 29 scenes from KOMPSAT-3A L1G data. The results indicated high relative geometric accuracy, with an average error of 1.63 pixels. Furthermore, we were able to obtain high-quality seamless mosaic images. Our proposed method is expected to enhance the utility of KOMPSAT-3A imagery for large-scale environmental and urban analysis and to provide more accurate and comprehensive data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.