Abstract
This paper presents a multiple DoFs (degrees-of-freedom) prosthetic forearm and sEMG (surface electromyogram) pattern recognition and motion intent classification of forearm amputee. The developed prosthetic forearm has 9 DoFs hand and single-DoF wrist, and the socket is designed considering wearability. In addition, the pattern recognition based on sEMG is proposed for prosthetic control. Several experiments were conducted to substantiate the performance of the prosthetic forearm. First, the developed prosthetic forearm could perform various motions required for activity of daily living of forearm amputee. It was able to control according to shape and size of the object. Additionally, the amputee was able to perform ‘tying up shoe’ using the prosthetic forearm. Secondly, pattern recognition and classification experiments using the sEMG signals were performed to find out whether it could classify the motions according to the user’s intents. For this purpose, sEMG signals were applied to the multilayer perceptron (MLP) for training and testing. As a result, overall classification accuracy arrived at 99.6% for all participants, and all the postures showed more than 97% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.