Abstract
Honeycomb crash absorbers are known as mechanical energy-absorbing systems in both automotive and aerospace industries. However, the gap of knowledge in the transverse impacts of multi-foam-filled or stiffener-reinforced honeycombs is still unfilled. This paper investigates the energy absorption process in large crash boxes applied onto a road maintenance vehicle, exploring four aluminium honeycomb absorbers with design factors like added aluminium foam, corrugated sheet thicknesses, and stiffener reinforcements. The optimised foam-filled honeycomb structures are analysed for four crash scenarios in two different directions; frontal impact (T-direction) and lateral impact (L-direction) subjected to 50 km/h crash speed. The objective of this research is to identify the most efficient design that achieves a maximum acceleration of up to 20g while absorbing a specific energy of 145 kJ. The FE models were developed in ABAQUS to explore various scenarios related to damage zones, impact energy capabilities, and multi-foam-filled crash boxes. Finally, the lightest design of honeycomb absorbers which can maximise energy absorption while maintaining acceleration below the specified threshold of 20g will be recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.