Abstract

This paper describes a research program investigating the development of “moving spars” to enable active aeroelastic control of aerospace structures. A number of different concepts have been considered as part of the EU funded Active Aeroelastic Aircraft Structures (3AS) project that enable the control of the bending and torsional stiffness of aircraft wings through changes in the internal aircraft structure. The aeroelastic behaviour, in particular static deflections, can be controlled as desired through changes in the position, orientation and stiffness of the spars. The concept described in this paper is based upon translational movement of the spars. This will result in changes in the torsional stiffness and shear centre position whilst leaving the bending stiffness unaffected. An analytical study of the aeroelastic behaviour demonstrates the benefits of using such an approach. An experimental investigation involving construction and bench testing of the concepts was undertaken to demonstrate its feasibility. Finally, a wind tunnel test of simple wing models constructed using these concepts was performed. The simulated and experimental results show that it is possible to control the wind twist in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.