Abstract

Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process to synthesize monodisperse mesoporous microballs built of decahedral anatase nanocrystals. FE-SEM observation and XRD analysis have confirmed that the formed decahedral anatase-rich powder retained the original spherical morphology of the precursor. Importantly, a hierarchical structure composed of faceted anatase has been achieved under “green” conditions, i.e., fluorine-free. Additionally, the hysteresis loops (BET results) have confirmed the existence of mesopores. Interestingly, faceted microballs show noticeable photocatalytic activity under UV/vis irradiation for hydrogen generation without any co-catalyst use, reaching almost forty times higher activity than that by famous commercial titania photocatalyst—P25. It has been proposed that enhanced photocatalytic performance is caused by mesoporous structure and co-existence of two kinds of facets, i.e., {001} and {101}, and thus hindered charge carriers’ recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.