Abstract

Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry. Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China. The author conducts a systematic analysis of domestic publications addressing “monitoring and assessment of forest biomass and carbon storage” in order to understand the development trends, describes the brief history through three stages, and gives the situation of new development. Towards the end of the 20th century, a large number of papers on biomass and productivity of the major forest types in China had been published, covering the exploration and efforts of more than 20 years, while investigations into assessment of forest carbon storage had barely begun. Based on the data of the 7th and 8th National Forest Inventories, forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species, both previously published and newly developed. Accompanying the implementation of the 8th National Forest Inventory, a program of individual tree biomass modeling for major tree species in China was carried out simultaneously. By means of thematic research on classification of modeling populations, as well as procedures for collecting samples and methodology for biomass modeling, two technical regulations on sample collection and model construction were published as ministerial standards for application. Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards. With the improvement of biomass models and carbon accounting parameters, thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage, in order to realize their dynamic monitoring in national forest inventories. Strengthening the analysis and assessment of spatial distribution patterns of forest biomass and carbon storage through application of remote sensing techniques and geostatistical approaches will also be one of the major directions of development in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call