Abstract
This work reports the development of a novel class of affinity co-polymeric materials using supercritical fluid technology. Polymeric materials with molecular recognition to flufenamic acid, were first synthesized in supercritical carbon dioxide (scCO 2) using the drug as template. Molecularly imprinted co-polymers of methacrylic acid (MAA) or N-isopropyl acrylamide (NIPAAm) crosslinked with ethylene glycol dimethacrylate (EGDMA) were synthesized using different crosslinking degrees and template:monomer ratios, at 65 °C and 21 MPa. High-pressure NMR experiments confirmed that the nature of the interactions between the drug and the functional monomers during the polymerization step are mainly hydrogen bonds. scCO 2-assisted impregnation revealed that the imprinted matrices were able to uptake higher amounts of flufenamic acid. This effect was particularly evidenced in the more crosslinked matrices, with P(MAA–EGDMA) imprinted copolymers binding up to 101.5 mg drug/g polymer against only 50.5 mg/g in the non-imprinted copolymer. In vitro drug delivery experiments showed that imprinted co-polymers release the drug in a more sustained way than the corresponding non-imprinted matrices. Overall it was shown that supercritical fluid technology is a viable approach for the development of self-assembly molecular recognition polymers with potential application in controlled drug delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.