Abstract

Owing to their ability to induce excitation of specific molecular orbitals or initiate chemical reactions, photochemical reactions have the potential to be more effective at selectively activating target molecules than thermal reactions. The thermal reactions transfer thermal energy to activate molecules, which often leads to the activation of multiple molecular species, including undesired ones, resulting in non-selectivity. This nonselectivity may result in undesirable side reactions or decrease reaction efficiency. Additionally, photochemical reactions can induce selective activation by absorbing specific wavelengths of light. However, visible light-driven photocatalytic reactions typically require expensive transition metal catalysts or organic dyes, leaving plenty of room for improvement. To address the aforementioned issues, the photochemical properties of the main group elements, such as halogens, were optimized and methodologies for visible light-induced reactions were developed. Activation of molecular halogen, halogen-carbon bonds, and halogen bonding interactions were independently investigated and various methodologies were reported. These developed reactions are excellent methodologies that use inexpensive raw materials and are thus predicted to contribute significantly toward sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.