Abstract

Photoacoustic imaging (PA imaging or PAI) has been focused on as a new technique to provide images of high spatial resolution, at depths of up to 5 cm, and the development of novel PAI probes for tumor imaging is of marked interest. Although nanomaterials such as gold nanorods have been reported as PAI probes, dyes are required to aid their ease of preparation, cost-effectiveness, and safety. However, because PAI has relatively low intrinsic sensitivity compared to optical imaging, and requires high-energy laser pulse exposure, an appropriate probe design, high tumor accumulation, and photostability are required for PAI probes. We developed some dyes and evaluated their usefulness as PAI probes. We first developed a high tumor-accumulation dye probe, IC7-1-Bu, which utilizes serum albumin as a tumor-targeting carrier to deliver an adequate PA signal at the tumor. Although IC7-1-Bu showed strong tumor targeting ability and a sufficient PA signal at the tumor in in vivo studies, IC7-1-Bu lacks photostability against multiple laser irradiations of PAI. In order to improve dye photostablity, we focused on the effect of singlet oxygen ((1)O2) generated by excited PAI probes on probe degeneration, and developed a triplet-state quencher conjugated dye probe, IC-5-T. IC-5-T reduced (1)O2 generation and improved photostability against multiple irradiations compared to IC7-1-Bu. IC-5-T also showed a sufficient PA signal at the tumor, and 1.5-fold higher photostabillity compared to IC7-1-Bu in sequential in vivo PAI studies. These results suggest that IC-5-T is a potential PAI probe for tumor imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.