Abstract
Molecular dynamics is a method of studying microstructure and properties by calculating and simulating the movement and interaction of molecules. The molecular dynamics simulation method has become an important method for studying the structural and dynamic characteristics of slag systems and can make up for the shortcomings of existing detection methods and experiments. Firstly, this paper analyzes the development process and application fields of molecular dynamics, summarizes the general simulation steps and software algorithms of molecular dynamics simulation methods, and discusses the advantages and disadvantages of the algorithms and the common functions of the software. Secondly, the research status and application progress of molecular dynamics simulation methods in the study of phosphate, silicate, aluminate and aluminosilicate are introduced. On this basis, a method of combining molecular dynamics simulation with laboratory experiments is proposed, which will help obtain more accurate simulation results. This review provides theoretical guidance and a technical framework for the effective analysis of the microstructure of different slag systems via molecular dynamics, so as to finally meet the needs of iron and steel enterprises in producing high-quality steel grades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.