Abstract

Present study focuses extensively on the change in electrical, superconducting and microhardness parameters with partial substitution of trivalent V+3 impurities replacing Bi+3 ions in Bi-2212 ceramic compound with the aid of dc electrical resistivity and microhardness test measurements. Experimental findings, calculation results, and phenomenological discussions provide that the optimum vanadium substitution level is found to be x = 0.01 in the Bi2.0-xVxSr2.0Ca1.1Cu2.0Oy (Bi-2212) ceramic system for the highest conductivity, crystallinity quality, superconducting, and mechanical performance features depending on the decreased microscopic structural problems. All the findings are wholly verified by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) analyses. The dc electrical measurements indicate that the optimum vanadium ions support the pairing mechanism for the formation of new polaronic states in the clusters of microdomains, and hence expand superconducting energy gap due to the enhancement of amplitude part of pair wave function in the spin-density wave systems. The excess vanadium content degrades all the basic thermodynamics and quantum mechanical quantities mentioned due to the stress-induced phase transformation. Numerically, the Bi-2212 advanced ceramic matrix prepared by the optimum vanadium impurity is noticed to present the smallest residual resistivity value of 0.08 mΩ cm, room temperature resistivity value of 8.84 mΩ cm, and broadening degree of 0.36 K. Similarly, the ceramic material is found to possess the highest residual resistivity ratio of 3.05, carrier concentration number of 0.153041, critical transition offset and onset value of 84.66 K and 85.02 K, respectively. Besides, the microhardness findings reveal that the same compound with the least sensitivity to the applied test loads exhibits the largest Hv value of 4.799 GPa, Young's moduli of 393.303 GPa, yield strength of (0.969 GPa), and elastic stiffness coefficient of 15.5574 (GPa)7/4 under the applied test load of 0.245 N. The XRD investigations show that the presence of optimum vanadium impurity supports the formation of a high superconducting phase, c-axis length, and average crystallite size. All the findings are morphologically confirmed by the SEM images. It is found that the crystallographically best crystallinity quality and view of surface morphology is observed for the optimum vanadium substitution level. All in all, new higher properties for the conductivity, crystallinity quality, surface morphology, superconducting, and microhardness parameters based on the optimum vanadium replacement encourage the Bi-2212 crystal system to use in much more application places.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.