Abstract

The utilization of wave energy is expected since ocean wave energy has a high potential. The improvement of the feasibility of wave energy converters requires control that maximizes the electric output energy, including the copper loss under a displacement constraint. Several model-based and model-free reactive controls have been developed. Although model-based reactive control attains high performance, it struggles to deal with modeling errors and forecasting wave excitation forces. On the other hand, the model-free reactive control can adapt to dynamic modeling, including modeling errors; however, it requires a vast amount of learning data and considerable time and effort to consider the displacement constraint. Model-based and model-free reactive controls each have advantages and disadvantages. Combined model-based and model-free reactive controls are desirable to freely switch between the model-based and model-free reactive controls based on various ocean situations. In this study, two equivalent model-based and model-free reactive controls that can consider the copper loss and displacement constraints without forecasting the wave excitation forces were proposed. The model-free reactive control was compared with the model-based reactive control and a conventional control using numerical simulations in irregular waves. The results of the simulation show that the proposed model-based reactive control achieves superior performance compared to that of the conventional control. The proposed model-free reactive control achieved comparable performance to that of the proposed model-based reactive control under various wave conditions. Moreover, the proposed model-free reactive control decreased the required training trials. The development of the two equivalent control schemes will lead to the proposal of combined model-based and model-free reactive controls in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.