Abstract

The self-absorption effect in laser-induced breakdown spectroscopy (LIBS) reduces the accuracy of quantitative measurement results. The self-absorption-free LIBS (SAF-LIBS) has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time. In this work, a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed, in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence, and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity, so that the CCD spectrometer can replace an intensified CCD (ICCD) and echelle spectrometer in SAF-LIBS. Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%, which is equivalent to that of traditional SAF-LIBS. This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma, but also has advantages of miniaturization, low cost, convenience and reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call